Communication

Synthesis of [6.8]Cyclacene: Conjugated Belt and Model for an Unusual Type of Carbon Nanotube
 Birgit Esser, Frank Rominger, and Rolf Gleiter

J. Am. Chem. Soc., 2008, 130 (21), 6716-6717•DOI: 10.1021/ja801918n • Publication Date (Web): 07 May 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis of [6.8] $]_{3}$ Cyclacene: Conjugated Belt and Model for an Unusual Type of Carbon Nanotube

Birgit Esser, Frank Rominger, and Rolf Gleiter*
Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Received March 21, 2008; E-mail: rolf.gleiter@oci.uni-heidelberg.de

Hoop shaped molecules consisting of annelated, unsaturated rings are of interest with respect to their conjugation, their spectroscopic properties, their cavities and as possible structural motifs for carbon nanotubes. [6] $]_{n}$ Cyclacenes $^{1}(2(n=8))$ which are built from n linearly annelated benzene rings have been discussed in the literature since $1954^{2,3}$ and can, as well as cyclo[$\left.n\right]$ phenacenes $(3(n=10))$, be regarded as subunits of carbon nanotubes. ${ }^{4}$ However, their synthesis is still lacking, although the challenge has been undertaken by several groups. ${ }^{5-7}$ Their results have shown that there are two main obstacles in the synthesis of 2 . The bending of a linear chain of annelated benzene rings into a hoop shape as the first has been overcome by the preparation of belt-like precursors through Diels-Alder reactions with 7 -oxanorbornane ${ }^{5,7}$ or cyclohexane derivatives. ${ }^{6}$ The anticipated high reactivity of $[6]_{n}$ cyclacenes due to a small singlet-triplet gap predicted by quantum chemical calculations ${ }^{8}$ is the second obstacle to which we also ascribe the failures to convert the belt-like precursors to fully conjugated systems. This assumption was supported by a recent synthesis of a derivative of the cyclo[10]phenacene $\mathbf{3}$ (Figure 1) for which, unlike the $[6]_{n}$ cyclacenes, a large singlet-triplet gap is expected. It was accomplished by selective reduction of the north and south pole of C_{60}. ${ }^{9}$

Both obstacles, the bending problem and the singlet-triplet gap, can be circumvented by incorporating such conjugated ring systems that naturally adopt a boat-like conformation. ${ }^{3 \mathrm{c}}$ Especially favorable should be eight-membered (cyclooctatetraene) rings in conjunction with four- and six-membered rings, the former allowing for conjugation and fulfilling the boat shape requirement. Thus, we started to explore the synthesis of $[4.8]_{n}$ and $[6.8]_{n}$ cyclacenes $^{3 c}$ and found a rather simple access to the $[4.8]_{3}$ cyclacene derivative 4 (Figure 1). ${ }^{10}$ In connection with this work and supported by quantum chemical calculations, ${ }^{11}$ we report herein the synthesis of $[6.8]_{3}$ cyclacene $\mathbf{1}$ (Figure 1) as the first purely hydrocarbon cyclacene and model for a new type of carbon nanotube.

Our stepwise synthesis of $\mathbf{1}$ commenced with the readily available 4,6-dimethylisophthalaldehyde 5^{12} (Scheme 1). Selective reduction of one of the aldehydic groups with NaBH_{4} and subsequent treatment of the monoalcohol with HBr in boiling HOAc afforded the benzylic bromide 6 in 65% yield (two steps). 6 was quantitatively converted to the phosphonium salt 7 by refluxing with triphenylphosphine in toluene. The three benzene rings were assembled in a cyclic fashion by an intermolecular Wittig cyclization reaction of 7 , achieving the hexamethyl $\left[2_{3}\right]$-meta-cyclophanetriene $\mathbf{8}$ in 7% yield as the first key intermediate. In the choice of method, we followed Wennerström ${ }^{13}$ who had obtained the unsubstituted [23]-meta-cyclophanetriene in 28% yield. The lower yield in our case was presumably caused by the steric hindrance stemming from the methyl groups. The corresponding tetra- up to octameric meta-cyclophane-n-enes could be isolated as minor products.

The hexamethyl $\left[2_{3}\right]$-meta-cyclophanetriene 8 was obtained as a mixture of the all-Z, 8a, and E, Z, Z isomer $\mathbf{8 b}$. This mixture could

1

4

Figure 1. $[6.8]_{3}$ Cyclacene (1), [6] $]_{8}$ cyclacene (2), cyclo[10]phenacene (3), and CpCo -capped hexabenzo $[4.8]_{3}$ cyclacene (4).

${ }^{a}$ Reagents and conditions: (a) $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, rt; (b) $\mathrm{HBr}, \mathrm{HOAc}$, reflux, 65% (two steps); (c) PPh_{3}, toluene, reflux, 99%; (d) $\mathrm{LiOEt} / \mathrm{EtOH}, \mathrm{DMF}$, $-10^{\circ} \mathrm{C}, 7 \%$; (e) $h v$, benzene, $5^{\circ} \mathrm{C}, 85 \%$; (f) NBS, dibenzoylperoxide, CCl_{4}, reflux, 40%; (g) IBX, DMSO, $65^{\circ} \mathrm{C}, 37 \%$; (h) $\mathrm{TiCl}_{3}(\mathrm{DME})_{1.5}, \mathrm{Zn}-\mathrm{Cu}$, DME, reflux, 8%.
be converted to pure all-Z isomer $\mathbf{8 a}$ in 85% yield by irradiation of a benzenic solution of $\mathbf{8 a} / \mathbf{8 b}$ with a mercury high pressure lamp $(\lambda=254 \mathrm{~nm})$. The NMR spectrum of $\mathbf{8 a}$ points toward a $C_{3 v}$ symmetrical structure, although in the solid state the molecular structure of $\mathbf{8 a}$ is twisted to a (noncrystallographic) C_{2} symmetry (Figure 2). In solution, a fast equilibrium between these twisted conformations is observed as mentioned above with no coalescence down to $-90^{\circ} \mathrm{C}$. NBS bromination of $\mathbf{8} \mathbf{a}$ in CCl_{4} afforded the hexakis(bromomethyl) derivative 9 in 40% yield. X-ray crystallographic investigation of single crystals of 9 revealed a similar C_{2} symmetrical conformation to that of $\mathbf{8 a}$, while in solution a fast equilibrium resulting in an average $C_{3 v}$ symmetry is seen from the NMR spectrum. This species opened the door to the second key intermediate, the hexaaldehyde $\mathbf{1 0}$. Oxidation of the bromomethyl groups in 9 was achieved in 37% yield by reaction with 2-iodoxybenzoic acid (IBX) in DMSO. ${ }^{14}$ The conformation of $\mathbf{1 0}$ in the solid state (X-ray) and its fast equilibrium in solution (NMR) was

Figure 2. X-ray structure of $\mathbf{8 a}$ (50% probability ellipsoids; front and side view; apart from the olefinic ones, hydrogen atoms are omitted for clarity).

Figure 3. X-ray structure of $\mathbf{1}$ (50% probability ellipsoids; in the lefthand structure hydrogen atoms are omitted for clarity).
again found to be similar to those of $\mathbf{8 a}$ and $\mathbf{9}$. The final 3-fold intramolecular ring closure of $\mathbf{1 0}$ to $\mathbf{1}$ was achieved by a McMurry coupling using low valent titanium $\left(\mathrm{TiCl}_{3}-\mathrm{DME}\right.$ complex, $\mathrm{Zn}-\mathrm{Cu}$ couple) ${ }^{15}$ in refluxing DME in 8% yield.

The anticipated $D_{3 h}$ symmetrical structure of 1 was confirmed by its analytical data and from X-ray measurements on single crystals (Figure 3). Its structural parameters are close to those theoretically predicted. ${ }^{11}$ The carbon skeleton of $\mathbf{1}$ is reminiscent of Boekelheide's $\left[2_{6}\right](1,2,4,5)$ cyclophane (deltaphane) which consists of three isolated benzene rings bridged by ethano groups. ${ }^{16}$ In $[6.8]_{3}$ cyclacene 1 , the mean angle between the plane of the double bond and that of the adjacent aromatic rings amounts to 71.9°. This indicates about 31% conjugation for the cyclacene torus. ${ }^{17}$ The UV/ vis spectrum of 1 shows an absorption maximum at $220 \mathrm{~nm}(\log \epsilon$ $=4.69)$ with two shoulders at 278 and $290 \mathrm{~nm}(\log \epsilon=3.40$ and 3.32 , respectively). Fluorescence is observed with a maximum at 370 nm corresponding to a Stokes shift of 80 nm . The UV absorptions are very similar to those of dibenzo[a.e]cyclooctatetraene $(244,274$, and 304 nm$)$, and a comparison of the NMR spectra shows an upfield shift $(0.7-0.8 \mathrm{ppm})$ of the aromatic protons in $\mathbf{1}$ compared to the latter. $[6.8]_{3}$ Cyclacene 1 represents the smallest and most strained member of the $[6.8]_{n}$ cyclacene family. Smaller bending angles can be anticipated for larger [6.8] $]_{n}$ cyclacenes, ${ }^{11}$ and they should be of great interest regarding their conjugation properties. The synthetic path leading to $[6.8]_{3}$ cyclacene 1 offers a general route to $[6.8]_{n}$ cyclacenes starting from hexamethylsubstituted all-Z-[2n]-meta-cyclophane-n-enes.

Structural alternatives to classical fullerenes and carbon nanostructures comprising ring sizes of three- to nine-membered have been considered and theoretically investigated. ${ }^{18}$ Slanina calculated a stable cuboctahedron-like C_{48} structure composed of four-, six-, and eight-membered rings. ${ }^{18 c}$ An expansion of the [6.8] cyclacenes in the direction of the principal molecular axis leads to carbon nanotubes whose molecular pattern comprises four-, six-, and eightmembered rings. ${ }^{19}$ This is a yet unknown type of carbon nanotube but would be a very interesting target to investigate.

In conclusion, we accomplished the synthesis of [6.8] 3 cyclacene $\mathbf{1}$ as the first fully conjugated purely hydrocarbon cyclacene. Due
to its unsaturated character, it offers conjugation around the beltlike torus consisting of annelated six- and eight-membered rings. It is the smallest and most strained member of the $[6.8]_{n}$ series. ${ }^{11}$ Our synthesis offers a general path to [6.8] $]_{n}$ cyclacenes, thus the higher and as anticipated less strained and stronger conjugated members of the [6.8] $]_{n}$ cyclacene series are within reach. Furthermore, our work gives first insight into the molecular structures of $\left[2_{3}\right]$ -meta-cyclophanetrienes.

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft for financial support. B.E. thanks the Studienstiftung des deutschen Volkes for a graduate fellowship, and M. Dörner for preparative assistance.

Supporting Information Available: Experimental procedures, characterization of all key compounds, and X-ray crystallographic data. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) We use the term $[6]_{n}$ cyclacenes instead of the commonly used expression $[n$]cyclacenes, allowing a generalization for systems incorporating different ring sizes.
(2) Heilbronner, E. Helv. Chim. Acta 1954, 37, 921-935.
(3) Reviews: (a) Herges, R. In Modern Cyclophane Chemistry; Gleiter R., Hopf, H., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 337-358. (b) Scott, L. T. Angew. Chem. 2003, 115, 4265-4267; Angew. Chem., Int. Ed. 2003, 42, 4133-4135. (c) Gleiter, R.; Hellbach, B.; Gath, S.; Schaller, R. Pure Appl. Chem. 2006, 78, 699-706. (d) Tahara, K.; Tobe, Y. Chem. Rev. 2006, 106, 5274-5290. (e) Kohnke, F. H.; Mathias, J. P.; Stoddart, J. F. Top. Curr. Chem. 1993, 165, 1-69. (f) Schröder, A.; Mekelburger, H.-B.; Vögtle, F. Top. Curr. Chem. 1994, 172, 179-201.
(4) (a) Radushkevich, L. V.; Lukyanovich, V. M. Z. Fis. Chim. 1952, 26, $88-$ 95. (b) Iijima, S. Nature 1991, 354, 56-58. (c) Iijima, S.; Ichihashi, T. Nature 1993, 363, 603-605. (d) Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605-607.
(5) (a) Ashton, P. R.; Brown, G. R.; Isaacs, N. S.; Giuffrida, D.; Kohnke, F. H.; Mathias, J. P.; Slawin, A. M. Z.; Smith, D. R.; Stoddart, J. F.; Williams, D. J. J. Am. Chem. Soc. 1992, 114, 6330-6353. (b) Mathias, J. P.; Stoddart, J. F. Chem. Soc. Rev. 1992, 21, 215-225.
(6) (a) Cory, R. M.; McPhail, C. L.; Dikmans, A. J.; Vittal, J. J. Tetrahedron Lett. 1996, 37, 1983-1986. (b) Cory, R. M.; McPhail, C. L. Tetrahedron Lett. 1996, 37, 1987-1990.
(7) (a) Kintzel, O.; Luger, P.; Weber, M.; Schlüter, A.-D. Eur. J. Org. Chem. 1998, 99-105. (b) Neudorff, W. D.; Lentz, D.; Anibarro, M.; Schlüter, A.D. Chem.-Eur. J. 2003, 9, 2745-2757. (c) Stuparu, M.; Gramlich, V.; Stanger, A.; Schlüter, A.-D. J. Org. Chem. 2007, 72, 424-430.
(8) (a) Choi, H. S.; Kim, K. S. Angew. Chem. 1999, 111, 2400-2402. (b) Angew. Chem., Int. Ed. 1999, 38, 2256-2258. (c) Chen, Z.; Jiang, D.; Lu, X.; Bettinger, H. F.; Dai, S.; Schleyer, P. v. R.; Houk, K. N. Org. Lett. 2007, 9, 5449-5452.
(9) Matsuo, Y.; Tahara, K.; Sawamura, M.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 8725-8734.
(10) Hellbach, B.; Rominger, F.; Gleiter, R. Angew. Chem. 2004, 116, 59705973; Angew. Chem., Int. Ed. 2004, 43, 5846-5849.
(11) Esser, B.; Raskatov, J. A.; Gleiter, R. Org. Lett. 2007, 9, 4037-4040.
(12) Dialdehyde 5 was prepared from 1,5-bis(chloromethyl)-2,4-dimethylbenzene ${ }^{20}$ in a Sommelet reaction following the procedure by Wood ${ }^{21}$ for 2,5dimethylterephthalaldehyde.
(13) Tanner, D.; Wennerström, O. Acta Chem. Scand. 1983, B37, 693-698.
(14) Moorthy, J. N.; Singhal, N.; Senapati, K. Tetrahedron Lett. 2006, 47, 17571761.
(15) McMurry, J. E.; Lectka, T.; Rico, J. G. J. Org. Chem. 1989, 54, 37483749.
(16) Kang, H. C.; Hanson, A. W.; Eaton, B.; Boekelheide, V. J. Am. Chem. Soc. 1985, 107, 1979-1985.
(17) The percentage of conjugation was calculated assuming that the overlapping of p orbitals is directly proportional to the cosinus of the angle between them.
(18) (a) Slanina, Z.; Lee, S.-L. THEOCHEM 1994, 304, 173-179. (b) Fujita, M.; Yoshida, M.; Osawa, E. Fullerene Sci. Technol. 1995, 3, 93-105. (c) Slanina, Z.; Lee, S.-L. Fullerene Sci. Technol. 1995, 3, 151-161. (d) Shibuya, T.; Yoshitani, M. Chem. Phys. Lett. 1987, 137, 13-16.
(19) For an example of a structural pattern for a carbon network comprising four-, six-, and eight-membered rings, see Supporting Information.
(20) Gerisch, M.; Krumper, J. R.; Bergman, R. G.; Tilley, T. D. Organometallics 2003, 22, 47-58.
(21) Wood, J. H.; Tung, C. C.; Perry, M. A.; Gibson, R. E. J. Am. Chem. Soc. 1950, 72, 2992-2993.

JA801918N

